Volumetric full-range magnetomotive optical coherence tomography.

نویسندگان

  • Adeel Ahmad
  • Jongsik Kim
  • Nathan D Shemonski
  • Marina Marjanovic
  • Stephen A Boppart
چکیده

Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging magnetically labeled cells with magnetomotive optical coherence tomography.

We introduce a novel contrast mechanism for optical coherence tomography (OCT) whereby the optical scattering of magnetically labeled cells is modified by means of an externally applied magnetic field. This modification is made through the addition of a small electromagnet to the imaging arm of a conventional OCT interferometer. We measure the magnetomotive OCT signal by differencing pairs of a...

متن کامل

Magnetomotive contrast for in vivo optical coherence tomography.

Molecularly-specific contrast can greatly enhance the biomedical utility of optical coherence tomography (OCT). We describe a contrast mechanism, magnetomotive OCT (MMOCT), where a modulated magnetic field induces motion of magnetic nanoparticles. The motion of the nanoparticles modifies the amplitude of the OCT interferogram. High specificity is achieved by subtracting the background fluctuati...

متن کامل

Intravascular magnetomotive optical coherence tomography of targeted early-stage atherosclerotic changes in ex vivo hyperlipidemic rabbit aortas.

We report the development of an intravascular magnetomotive optical coherence tomography (IV-MM-OCT) system used with targeted protein microspheres to detect early-stage atherosclerotic fatty streaks/plaques. Magnetic microspheres (MSs) were injected in vivo in rabbits, and after 30 minutes of in vivo circulation, excised ex vivo rabbit aorta samples specimens were then imaged ex vivo with our ...

متن کامل

Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography.

We have demonstrated a novel Fourier-domain optical coherence tomography system and signal-processing algorithm for full-range, real-time, artifact-free quantitative imaging of the anterior chamber. Cross-sectional full-range images comprising 1024 x 800 pixels (axial x lateral) were acquired and displayed at 6.7 images/s. Volumetric data comprising 1024 x 400 x 60 pixels (axial x lateral x ele...

متن کامل

Dual-coil magnetomotive optical coherence tomography for contrast enhancement in liquids.

Magnetomotive optical coherence tomography (MM-OCT) is a functional extension of OCT which utilizes magnetically responsive materials that are modulated by an external magnetic field for contrast enhancement and for elastography to assess the structural and viscoelastic properties of the surrounding tissues. Traditionally, magnetomotive contrast relies on the interaction between the displacemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 19 12  شماره 

صفحات  -

تاریخ انتشار 2014